numpy的属性
| array = np.array([[1,2,3],
[4,5,6],
[7,8,9]])
print(array)
|
| [[1 2 3]
[4 5 6]
[7 8 9]]
|
创建array
| a = np.array([1,2,3],dtype=np.int32) #创建array的同时给定类型
print(a.dtype)
|
| b = np.array([1,2,3],dtype=np.float)
print(b.dtype)
|
| c = np.array([1,2,3])#一维数据
print(c)
|
| d = np.array([[1,2,3], #2维矩阵
[4,5,6]])
print(d)
|
| zero = np.zeros((2,3)) #生成2行3列全为0的矩阵 zeros矩阵
print(zero)
|
| [[ 0. 0. 0.]
[ 0. 0. 0.]]
|
| one = np.ones((3,4)) #生成3行4列全为1的矩阵 ones矩阵
print(one)
|
| [[ 1. 1. 1. 1.]
[ 1. 1. 1. 1.]
[ 1. 1. 1. 1.]]
|
| empty = np.empty((3,2))#生成3行2列全都接近于0(不等于0)的矩阵
print(empty)
|
| [[ 0. 0.]
[ 0. 0.]
[ 0. 0.]]
|
| e = np.arange(10) #arange的使用
print(e)
|
| f = np.arange(4,12)
print(f)
|
| g = np.arange(1,20,3)
print(g)
|
| h = np.arange(8).reshape(4,2)#重新定义矩阵的形状
print(h)
|
| [[0 1]
[2 3]
[4 5]
[6 7]]
|
numpy的运算
| arr1 = np.array([[1,2,3],
[4,5,6]])
arr2 = np.array([[1,1,2],
[2,3,3]])
print(arr1)
print(arr2)
|
| [[1 2 3]
[4 5 6]]
[[1 1 2]
[2 3 3]]
|
| print(arr1 + arr2) #数组的加法,按位加
|
| print(arr1 - arr2) #数组减法,按位减
|
| print(arr1 * arr2) #数组乘法,按位乘
|
| print(arr1 ** arr2) #数组双乘号求幂
|
| print(arr1 / arr2) #数组除法,按位除
|
| [[ 1. 2. 1.5 ]
[ 2. 1.66666667 2. ]]
|
| print(arr1*10)#数组所有的元素乘以10
|
| arr3 = arr1 > 3 #判断哪些元素大于3,返回的是布尔类型
print(arr3)
|
| [[False False False]
[ True True True]]
|
| arr4 = np.ones((3,5))
print(arr4)
|
| [[ 1. 1. 1. 1. 1.]
[ 1. 1. 1. 1. 1.]
[ 1. 1. 1. 1. 1.]]
|
| array([[ 6., 6., 6., 6., 6.],
[ 15., 15., 15., 15., 15.]])
|
| array([[ 6., 6., 6., 6., 6.],
[ 15., 15., 15., 15., 15.]])
|
| print(arr1)
print(arr1.T)#矩阵转置
print(np.transpose(arr1))#矩阵转置
|
| [[1 2 3]
[4 5 6]]
[[1 4]
[2 5]
[3 6]]
[[1 4]
[2 5]
[3 6]]
|
随机数生成及矩阵的运算2
| sample1 = np.random.random((3,2))#生成3行2列从0到1的随机数,调用的是numpy中random的random函数
print(sample1)
|
| [[ 0.42548654 0.60831272]
[ 0.48034909 0.70289579]
[ 0.96871932 0.33469266]]
|
| sample2 = np.random.normal(size=(3,2))#生成3行2列符合标准正态分布的随机数,使用的是random中的normal函数(标准正态分布)
print(sample2)
|
| [[ 0.82645622 -0.63300866]
[ 0.18604463 -0.30988056]
[-1.50301955 -0.51466896]]
|
| sample3 = np.random.randint(0,10,size=(3,2))#生成3行2列从0到10的随机整数 ,ranint(随机整数)
print(sample3)
|
| np.sum(sample1,axis=0)#对列求和,关键字axis0就是列,1就是行
|
| array([ 1.87455495, 1.64590117])
|
| np.sum(sample1,axis=1)#对行求和
|
| array([ 1.03379926, 1.18324488, 1.30341198])
|
| [[ 0.42548654 0.60831272]
[ 0.48034909 0.70289579]
[ 0.96871932 0.33469266]]
|
| np.argmin(sample1)#求最小值的索引 argmin(逐行从0开始的,将整个数组看展开成一维的)
|
| np.argmax(sample1)#求最大值的索引
|
| print(np.mean(sample1))#求平均值
print(sample1.mean())#求平均值
|
| 0.586742685664
0.586742685664
|
| np.median(sample1)#求中位数median
|
| array([[ 0.65229329, 0.77994405],
[ 0.69307221, 0.8383888 ],
[ 0.9842354 , 0.57852628]])
|
| sample4 = np.random.randint(0,10,size=(1,10))
print(sample4)
|
| array([[0, 1, 2, 2, 2, 3, 3, 8, 8, 9]])
|
| array([[ 0.42548654, 0.60831272],
[ 0.48034909, 0.70289579],
[ 0.33469266, 0.96871932]])
|
| np.clip(sample4,2,7)#小于2就变成2,大于7就变为7 ,数据阈值改变
|
| array([[7, 2, 3, 2, 2, 7, 2, 3, 2, 7]])
|
numpy的索引
| arr1 = np.arange(2,14)
print(arr1)
|
| [ 2 3 4 5 6 7 8 9 10 11 12 13]
|
| print(arr1[2])#第二个位置的数据,一维
|
| print(arr1[1:4])#第一到第四个位置的数据
|
| print(arr1[2:-1])#第二到倒数第一个位置的数据
|
| arr2 = arr1.reshape(3,4)
print(arr2)
|
| [[ 2 3 4 5]
[ 6 7 8 9]
[10 11 12 13]]
|
| for i in arr2: #迭代行
print(i)
|
| [2 3 4 5]
[6 7 8 9]
[10 11 12 13]
|
| for i in arr2.T:#迭代列,转置一下再进行迭代
print(i)
|
| [ 2 6 10]
[ 3 7 11]
[ 4 8 12]
[ 5 9 13]
|
| for i in arr2.flat:#一个一个元素迭代flat
print(i)
|
1
2
3
4
5
6
7
8
9
10
11
12 | 2
3
4
5
6
7
8
9
10
11
12
13
|
array合并
| arr1 = np.array([1,2,3])
arr2 = np.array([4,5,6])
arr3 = np.vstack((arr1,arr2))#垂直合并vertical(垂直)stack(堆放)
print(arr3)
print(arr3.shape)
|
| arr4 = np.hstack((arr1,arr2))#水平合并horizontal(水平)
print(arr4)
print(arr4.shape)
|
| arrv = np.vstack((arr1,arr2,arr3))
print(arrv)
|
| [[1 2 3]
[4 5 6]
[1 2 3]
[4 5 6]]
|
| arrh = np.hstack((arr1,arr2,arr4))
print(arrh)
|
| [1 2 3 4 5 6 1 2 3 4 5 6]
|
| arr = np.concatenate((arr1,arr2,arr1))
print(arr)
|
| arr = np.concatenate((arr3,arrv),axis=0)#合并的array维度要相同,array形状要匹配,axis=0纵向合并
print(arr)
|
| [[1 2 3]
[4 5 6]
[1 2 3]
[4 5 6]
[1 2 3]
[4 5 6]]
|
| arr = np.concatenate((arr3,arr3),axis=1)#合并的array维度要相同,array形状要匹配,axis=1横向合并
print(arr)
|
| [[1 2 3 1 2 3]
[4 5 6 4 5 6]]
|
| arr1.T
print(arr1.T) #一维的array不能转置
|
| arr1_1 = arr1[np.newaxis,:] #添加一个维度到行
print(arr1_1)
print(arr1_1.shape)
|
| arr1_2 = arr1[:,np.newaxis] #添加维度到列
print(arr1_2)
print(arr1_2.shape)
|
| arr1_3 = np.atleast_2d(arr1) #atleast_2d 将数据变成2维,维度比他高的不发生改变
print(arr1_3)
print(arr1_3.T)
|
array的分割
| arr1 = np.arange(12).reshape((3,4))
print(arr1)
|
| [[ 0 1 2 3]
[ 4 5 6 7]
[ 8 9 10 11]]
|
| arr2,arr3 = np.split(arr1,2,axis=1)#水平方向分割,分成2份split(分割) 将arr1切隔成2个arr2和arr3,在水平方向
print(arr2)
print(arr3)
|
| [[0 1]
[4 5]
[8 9]]
[[ 2 3]
[ 6 7]
[10 11]]
|
| arr4,arr5,arr6 = np.split(arr1,3,axis=0)#垂直方向分割,分成3份
print(arr4)
print(arr5)
print(arr6)
|
| [[0 1 2 3]]
[[4 5 6 7]]
[[ 8 9 10 11]]
|
| arr2,arr3,arr4 = np.split(arr1,3,axis=1)#水平方向分割,分成3份,没办法切割成相同大小的部分
print(arr2)
print(arr3)
print(arr4)
|
| ---------------------------------------------------------------------------
TypeError Traceback (most recent call last)
~/anaconda3/lib/python3.6/site-packages/numpy/lib/shape_base.py in split(ary, indices_or_sections, axis)
552 try:
--> 553 len(indices_or_sections)
554 except TypeError:
TypeError: object of type 'int' has no len()
|
During handling of the above exception, another exception occurred:
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18 | ValueError Traceback (most recent call last)
<ipython-input-5-2961433b0366> in <module>()
----> 1 arr2,arr3,arr4 = np.split(arr1,3,axis=1)#水平方向分割,分成3份
2 print(arr2)
3 print(arr3)
4 print(arr4)
~/anaconda3/lib/python3.6/site-packages/numpy/lib/shape_base.py in split(ary, indices_or_sections, axis)
557 if N % sections:
558 raise ValueError(
--> 559 'array split does not result in an equal division')
560 res = array_split(ary, indices_or_sections, axis)
561 return res
ValueError: array split does not result in an equal division
|
| arr7,arr8,arr9 = np.array_split(arr1,3,axis=1)#水平方向分割,分成3份,不等分割
print(arr7)
print(arr8)
print(arr9)
|
| [[0 1]
[4 5]
[8 9]]
[[ 2]
[ 6]
[10]]
[[ 3]
[ 7]
[11]]
|
| arrv1,arrv2,arrv3 = np.vsplit(arr1,3)#垂直分割
print(arrv1)
print(arrv2)
print(arrv3)
|
| [[0 1 2 3]]
[[4 5 6 7]]
[[ 8 9 10 11]]
|
| arrh1,arrh2 = np.hsplit(arr1,2)#水平分割
print(arrh1)
print(arrh2)
|
| [[0 1]
[4 5]
[8 9]]
[[ 2 3]
[ 6 7]
[10 11]]
|
numpy的深拷贝,浅拷贝
| arr2 = arr1#arr1,arr2共享一块内存,浅拷贝
|
| arr2[0] = 5 #浅拷贝,同步改变
print(arr1)
print(arr2)
|
| arr3 = arr1.copy()#深拷贝这里就相当于普通变量的deepcopy
|
| arr3[0] = 10
print(arr1)
print(arr3)
|